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Summary We propose a semiparametric test to evaluate (a) whether different in-
struments induce subpopulations of compliers with the same observable characteristics,
on average; and (b) whether compliers have observable characteristics that are the same
as the full population, treated subpopulation, or untreated subpopulation, on average.
The test is a flexible robustness check for the external validity of instruments. To jus-
tify the test, we characterize the doubly robust moment for Abadie (2003)’s class of
complier parameters, and we analyse a machine learning update to κ weighting that
we call the automatic κ weight. We use the test to reinterpret the difference in local
average treatment effect estimates that Angrist and Evans (1998a) obtain when using
different instrumental variables.
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1. INTRODUCTION AND RELATED WORK

Average complier characteristics help to assess the external validity of any study that uses
instrumental variable identification (Angrist and Evans, 1998a; Angrist and Fernández-
Val, 2013a; Swanson and Hernán, 2013; Baiocchi et al., 2014; Marbach and Hangartner,
2020); whose treatment effects are we estimating when we use a particular instrument?
We propose a semiparametric hypothesis test, free of strong functional form restrictions,
to evaluate (a) whether two different instruments induce subpopulations of compliers
with the same observable characteristics, on average; and (b) whether compliers have
observable characteristics that are the same as the full population, treated subpopula-
tion, or untreated subpopulation, on average. It appears that no semiparametric test
previously exists for this important question about the external validity of instruments,
despite the popularity of reporting average complier characteristics in empirical research,
e.g. Abdulkadiroğlu et al. (2014, Table 2). By developing this hypothesis test, we equip
empirical researchers with a new robustness check.

Equipped with this new test, we replicate, extend, and test previous findings about the
impact of childbearing on female labour supply. In a seminal paper, Angrist and Evans
(1998a) use two different instrumental variables: twin births and same-sex siblings. The
two instruments give rise to two substantially different local average treatment effect
(LATE) estimates for the reduction in weeks worked due to a third child: -3.28 (0.63)
and -6.36 (1.18), respectively, where the standard errors are in parentheses. Angrist
and Fernández-Val (2013a) attribute the difference in LATE estimates to a difference
in average complier characteristics, i.e. a difference in average covariates for instrument
specific complier subpopulations, writing that “twins compliers therefore are relatively
more likely to have a young second-born and to be highly educated.” We find weak
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evidence in favour of the explanation that twins compliers are more likely to have a
young second-born on average. We do not find evidence that twins compliers have a
significantly different education level than same-sex compliers on average, but we do find
a significant difference at the high end of the education distributions.

Our test is based on a new doubly robust estimator, which we call the automatic κ
weight (Auto-κ). To prove the validity of the test, we characterize the doubly robust
moment function for average complier characteristics, which appears to have been pre-
viously unknown. More generally, we study low dimensional complier parameters that
are identified using a binary instrumental variable Z, which is valid conditional on a
possibly high dimensional vector of covariates X. Angrist et al. (1996) prove that iden-
tification of LATE based on the instrumental variable does not require strong functional
form restrictions; see Section 2. Using κ weighting, Abadie (2003) extends identification
for a broad class of complier parameters. As our main theoretical result, we characterize
the doubly robust moment function for this class of complier parameters by augmenting
κ weighting with the classic Wald formula. Our main result answers the open question
posed by S loczyński and Wooldridge (2018) of how to characterize the doubly robust mo-
ment function for the full class, and it generalizes the well known result of Tan (2006),
who characterizes the doubly robust moment function for LATE. By characterizing the
doubly robust moment function for Abadie (2003)’s class of complier parameters, we
handle the new and economically important case of average complier characteristics.

The doubly robust moment function confers many favourable properties for estimation.
As its name suggests, it provides double robustness to misspecification (Robins and
Rotnitzky, 1995) as well as the mixed bias property (Chernozhukov et al., 2018; Rotnitzky
et al., 2021). As such, it allows for estimation of models in which the treatment effect for
different individuals may vary flexibly according to their covariates (Frölich, 2007; Ogburn
et al., 2015). It also allows for nonlinear models (Abadie, 2003; Cheng et al., 2009),
which are often appropriate when outcome Y and treatment D are binary, and therefore
avoids the issue of negative weights in misspecified linear models (Blandhol et al., 2022).
Moreover, it allows for model selection of covariates and their transformations using
machine learning, as emphasized in the targeted machine learning (van der Laan and
Rubin, 2006; Zheng and van der Laan, 2011; Luedtke and van der Laan, 2016; van der
Laan and Rose, 2018) and debiased machine learning (Belloni et al., 2017; Chernozhukov
et al., 2018, 2022, 2023) literatures. A doubly robust estimator that combines both the κ
weight and Wald formulations not only guards against misspecification but also debiases
machine learning. Finally, it is semiparametrically efficient in many cases (Hasminskii and
Ibragimov, 1979; Robinson, 1988; Bickel et al., 1993; Newey, 1994; Robins and Rotnitzky,
1995; Hong and Nekipelov, 2010).

This paper was previously circulated under a different title (Singh and Sun, 2019). Its
structure is as follows. Section 2 defines the class of complier parameters from Abadie
(2003). Section 3 summarizes our main insight: the doubly robust moment for a complier
parameter combines the familiar Wald and κ weight formulations. Section 4 formalizes
this insight for the full class of complier parameters. Section 5 develops the practical im-
plication of our main insight: a semiparametric test to evaluate differences in observable
complier characteristics, which we use to revisit Angrist and Evans (1998a). Section 6
concludes. Appendix A proposes a machine learning estimator that we call the auto-
matic κ weight (Auto-κ), which we use to implement our proposed test. Appendix B
provides extensions: tests for the difference of (a) complier characteristic variances, and
(b) complier characteristic distributions over a finite support.
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2. FRAMEWORK

Consider the effect of a binary treatment D on a scalar outcome Y in Y, a subset of
R. Assume there is a binary instrumental variable Z available, as well as a potentially
high dimensional covariate X in X , a subset of Rdim(X). We observe n independent
and identically distributed observations (Wi), (i = 1, ..., n), where W = (Y,D,Z,X⊤)⊤

concatenates the random variables. Following the notation of Angrist et al. (1996), we
denote by Y (z,d) the potential outcome under the intervention Z = z and D = d. We
denote by D(z) the potential treatment under the intervention Z = z. Compliers are the
subpopulation for whom D(1) > D(0). We place standard assumptions for identification.

Assumption 2.1. (Instrumental variable identification) Assume the following con-
ditions hold almost surely.

1 Independence: {Y (z,d)}, {D(z)} |= Z | X for d = 0, 1 and z = 0, 1.
2 Exclusion: pr{Y (1,d) = Y (0,d) | X} = 1 for d = 0, 1.
3 Overlap: π0(X) = pr(Z = 1 | X) is in (0, 1).
4 Monotonicity: pr{D(1) ≥ D(0) | X} = 1 and pr{D(1) > D(0) | X} > 0.

Independence states that the instrument Z is as good as randomly assigned conditional
on covariates X. Exclusion imposes that the instrument Z only affects the outcome
Y via the treatment D. We can therefore simplify notation: Y (d) = Y (1,d) = Y (0,d).
Overlap ensures that there are no covariate values for which the instrument assignment
is deterministic. Monotonicity rules out the possibility of defiers: individuals who will
always pursue an opposite treatment status from their instrument assignment.

Angrist et al. (1996) prove identification of the local average treatment effect (LATE)
using Assumption 2.1. Vytlacil (2002) shows that Assumption 2.1 implies the existence of
a nonparametric latent index selection model that rationalizes observed and counterfac-
tual data. Abadie (2003) extends identification for a broad class of complier parameters.

Definition 2.1. (General class of complier parameters (Abadie, 2003)) Let g(y, d, x, θ)
be a measurable, real valued function such that E{g(Y,D,X, θ)2} < ∞ for all θ in Θ.
Consider complier parameters θ0 implicitly defined by any of the following expressions:

1 E{g(Y (0), X, θ) | D(1) > D(0)} = 0 if and only if θ = θ0;
2 E{g(Y (1), X, θ) | D(1) > D(0)} = 0 if and only if θ = θ0;
3 E{g(Y,D,X, θ) | D(1) > D(0)} = 0 if and only if θ = θ0.

We refer to these expressions as the three possible cases for complier parameters.

For a given instrumental variable Z, one may define the average complier characteris-
tics as a special case of Definition 2.1. This causal parameter summarizes the observable
characteristics of the complier subpopulation, who are induced to take up or refuse treat-
ment D based on the instrument assignment Z. It is an important parameter to estimate
because it aids the interpretation of LATE. As we will see in Section 5, this causal param-
eter can help to reconcile different LATE estimates obtained with different instruments.

Definition 2.2. (Average complier characteristics) Average complier character-
istics are θ0 = E{f(X) | D(1) > D(0)} for any measurable function f of covariate X that
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may have a finite dimensional, real vector value such that E{fj(X)2} <∞, where fj(X)
is the jth element of f(X).

3. KEY INSIGHT

3.1. Classic approaches: Wald formula and κ weight

We provide intuition for our key insight that a doubly robust moment for a complier
parameter has two components: the Wald formula and the κ weight. For clarity, we
focus on the familiar example of local average treatment effect (LATE) in this initial
discussion: θ0 = E{Y (1) − Y (0) | D(1) > D(0)}. In subsequent sections, we study the
entire class of complier parameters in Definition 2.1, including the new case of average
complier characteristics.

Under Assumption 2.1, LATE can be identified as

θ0 =
E {E(Y | Z = 1, X) − E(Y | Z = 0, X)}
E {E(D | Z = 1, X) − E(D | Z = 0, X)}

following Frölich (2007, Theorem 1). We call this expression the expanded Wald formula.
The direct Wald approach involves estimating the reduced form regression E(Y | Z,X)

and first stage regression E(D | Z,X), then plugging these estimates into the expanded
Wald formula. Such an approach is called the plug-in, and it is valid only when both
regressions are estimated with correctly specified and unregularized models. It is not
a valid approach when either regression is incorrectly specified, leading to the name
“forbidden regression” (Angrist and Pischke, 2008). It is also invalid when the covariates
are high dimensional and a regularized machine learning estimator is used to estimate
either regression. The matching procedure of Frölich (2007) faces similar limitations.

In seminal work, Abadie (2003) proposes an alternative formulation in terms of the κ
weights

κ(0)(W ) = (1 −D)
(1 − Z) − {1 − π0(X)}
{1 − π0(X)}π0(X)

, κ(1)(W ) = D
Z − π0(X)

{1 − π0(X)}π0(X)

where π0(X) = pr(Z = 1 | X) is the instrument propensity score. The κ weights have
the property that

θ0 = ω−1E{κ(1)(W )Y − κ(0)(W )Y }, ω = E

{
1 − D(1 − Z)

1 − π0(X)
− (1 −D)Z

π0(X)

}
.

In words, the mean of the product of Y and κ(d)(W ) gives, up to a scaling, the expected
potential outcome Y (d) of compliers when treatment is D = d. Abadie (2003) also intro-
duces a third weight κ(W ) for parameters that belong to the third case in Definition 2.1.

The κ weight approach would involve estimating the propensity score π̂ and plugging
this estimate into the κ weight formula. Intuitively, the κ weight approach is like a multi-
stage inverse propensity weighting. Impressively, it remains agnostic about the functional
form of the reduced form regression E(Y | Z,X) and first stage regression E(D | Z,X).
It is valid only when π̂ is estimated with a correctly specified and unregularized model.
It is invalid if π̂ is incorrectly specified or if covariates are high dimensional and a reg-
ularized machine learning estimator is used to estimate π̂. Moreover, the inversion of π̂
can lead to numerical instability in high dimensional settings.
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3.2. Doubly robust moment for a special case

Next, we introduce the moment function and doubly robust moment function formu-
lations of LATE. For the special case of LATE, these formulations were first derived
by Tan (2006) with the goal of addressing misspecification of the regressions and the
propensity score. Consider the expanded Wald formula. Rearranging and using the no-
tation V = (Y,D)⊤ as a column vector, γ0(Z,X) = E(V | Z,X) as a vector valued
regression, and

(
1, −θ

)
as a row vector, we arrive at the moment function formulation

of LATE:

E
[(

1, −θ
)
{γ0(1, X) − γ0(0, X)}

]
= 0 if and only if θ = θ0.

Denote the the Horvitz-Thompson balancing weight as

α0(Z,X) =
Z

π0(X)
− 1 − Z

1 − π0(X)
, π0(X) = pr(Z = 1 | X).

Tan (2006) shows that for LATE, the doubly robust moment function is

E
[(

1, −θ
)
{γ0(1, X) − γ0(0, X)} + α0(Z,X)

(
1, −θ

)
{V − γ0(Z,X)}

]
= 0

if and only if θ = θ0. The doubly robust formulation remains valid if either the vector
valued regression γ0 or propensity score π0 is incorrectly specified.

3.3. A new synthesis that allows for machine learning

Our key observation is the connection between the κ weight and the balancing weight α0.
This simple observation will allow us to characterize the doubly robust moment function
for a broad class of complier parameters, generalizing Tan (2006) to the full class defined
by Abadie (2003).

Proposition 3.1. (κ weight as balancing weight) The κ weights can be rewritten
as

κ(0)(W ) = α0(Z,X)(D − 1), κ(1)(W ) = α0(Z,X)D, κ(W ) = 1 − D(1 − Z)

1 − π0(X)
− (1 −D)Z

π0(X)
.

Proof. Observe that

α0(z, x) =
z

π0(x)
− 1 − z

1 − π0(x)
=

z − π0(x)

π0(x){1 − π0(x)}

which proves the expression for κ(0) and κ(1). Using these expressions, we have

κ(w) = {1 − π0(x)}α0(z, x)(d− 1) + π0(x)α0(z, x)d = 1 − d(1 − z)

1 − π0(x)
− (1 − d)z

π0(x)
.

Next, we formalize the sense in which the balancing weight α0 represents the functional
γ 7→ E

{(
1, −θ

)
γ(1, X) − γ(0, X)

}
that appears in the moment formulation of LATE

and the extended Wald formula.

Proposition 3.2. (Balancing weight as Riesz representer) The balancing weight
α0(z, x) is the Riesz representer to the continuous linear functional γ 7→ E{γ(1, X) −
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γ(0, X)}, i.e. for all γ such that E{γ(Z,X)}2 <∞,

E{γ(1, X) − γ(0, X)} = E{α0(Z,X)γ(Z,X)}.

Similarly, Z/π0(X) is the Riesz representer to the continuous linear functional γ 7→
E{γ(1, X)}, and (1 − Z)/{1 − π0(X)} is the Riesz representer to the continuous linear
functional γ 7→ E{γ(0, X)}.

Proof. This result is well known in semiparametrics. See e.g. Hernán and Robins (2020).
We provide the proof for completeness. Observe that

E

{
γ(Z,X)

Z

π0(X)
| X

}
= E

{
γ(Z,X)

1

π0(X)
| Z = 1, X

}
pr(Z = 1 | X)

= E

{
γ(Z,X)

1

π0(X)
| Z = 1, X

}
π0(X) = γ(1, X)

and likewise

E

{
γ(Z,X)

1 − Z

1 − π0(X)
| X

}
= γ(0, X).

Combining these two terms, we have by the law of iterated expectations

E{γ(1, X) − γ(0, X)} =

∫
{γ(1, x) − γ(0, x)}dpr(x)

=

∫ [
E

{
γ(Z,X)

Z

π0(X)
| X = x

}
− E

{
γ(Z,X)

1 − Z

1 − π0(X)
| X = x

}]
dpr(x)

= E

{
γ(Z,X)

Z

π0(X)

}
− E

{
γ(Z,X)

1 − Z

1 − π0(X)

}
.

An immediate consequence of Proposition 3.2 is that

E
{(

1, −θ
)
γ(1, X) − γ(0, X)

}
= E

{
α0(Z,X)

(
1, −θ

)
γ(Z,X)

}
for any γ.

In summary, Proposition 3.1 shows that the κ weight is a reparametrization of the
balancing weight α0. Meanwhile, Proposition 3.2 shows that the balancing weight appears
in the Riesz representer to the moment formulation of LATE, i.e. the expanded Wald
formula. We conclude that the κ weight is essentially the Riesz representer to the Wald
formula. In seminal work, Newey (1994) demonstrates that a doubly robust moment is
constructed from a moment formulation and its Riesz representer. Therefore the doubly
robust moment for complier parameters must combine the Wald formula and the κ weight.

With the general doubly robust moment function, one can propose flexible, semipara-
metric tests for complier parameters. In particular, the semiparametric tests may involve
regularized machine learning for flexible estimation and model selection of (a) the regres-
sion γ̂ in a way that approximates nonlinearity and heterogeneity, and (b) the balancing
weight α̂ in a way that guarantees balance. In Section 5, we instantiate such a test to
compare observable characteristics of compliers.

As explained in Appendix A, we avoid the numerically unstable step of estimating
and inverting π̂ that appears in Tan (2006); Belloni et al. (2017); Chernozhukov et al.
(2018). We replace it with the numerically stable step of estimating α̂ directly, extending
techniques of Chernozhukov et al. (2022a) to the instrumental variable setting. We call
this extension automatic κ weighting (Auto-κ), and demonstrate how it applies to the
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new and economically important case of average complier characteristics. In Appendix B,
we extend our framework to additional new cases: complier characteristic variances, and
complier characteristic distributions over a finite support.

In summary, our main theoretical result allows us to combine the classic Wald and κ
weight formulations for the entire class of complier parameters in Definition 2.1, including
average complier characteristics, while also updating them to use machine learning.

4. THE DOUBLY ROBUST MOMENT

We now state our main theoretical result, which is the doubly robust moment for the
class of complier parameters in Definition 2.1. This result formalizes the intuition of
Section 3, and it justifies the hypothesis test in Section 5. It is convenient to divide the
main result into two statements for clarity. Theorem 4.1 handles the first and second
cases in Definition 2.1, while Theorem 4.2 handles the third case in Definition 2.1.

Theorem 4.1. (Cases 1 and 2) Suppose Assumption 2.1 holds. Let g(y, d, x, θ) be a
measurable, real valued function such that E{g(Y,D,X, θ)2} <∞ for all θ in Θ.

1 If θ0 is defined by E[g{Y (0), X, θ0} | D(1) > D(0)] = 0, let v(w, θ) = (d−1)g(y, x, θ).

2 If θ0 is defined by E[g{Y (1), X, θ0} | D(1) > D(0)] = 0, let v(w, θ) = dg(y, x, θ).

Then the doubly robust moment function ψ for θ0 is of the form

ψ(w, γ, α, θ) = m(w, γ, θ) + ϕ(w, γ, α, θ), m(w, γ, θ) = γ(1, x, θ) − γ(0, x, θ),

ϕ(w, γ, α, θ) = α(z, x){v(w, θ) − γ(z, x, θ)}

where γ0(z, x, θ) = E{v(W, θ) | z, x} is a vector valued regression and α0(z, x) = z/π0(x)−
(1 − z)/{1 − π0(x)} is the Riesz representer of the functional γ 7→ E{γ(1, X, θ) −
γ(0, X, θ)}.

Proof. Consider the first case. Under Assumption 2.1, we can appeal to Abadie (2003,
Theorem 3.1):

0 = E[g{Y (0), X, θ0} | D(1) > D(0)] =
E{κ(0)(W )g(Y,X, θ0)}

pr{D(1) > D(0)}
.

Hence

0 = E{κ(0)(W )g(Y,X, θ0)} = E{α0(Z,X)(D − 1)g(Y,X, θ0)} = E{α0(Z,X)v(W, θ0)}
= E{α0(Z,X)γ0(Z,X, θ0)} = E{γ0(1, X, θ0) − γ0(0, X, θ0)}

appealing to the previous statement, Proposition 3.1, the definition of v(W, θ0), the law
of iterated expectations, and Proposition 3.2. Likewise for the second case.

In the doubly robust moment function ψ(w, γ, α, θ) = m(w, γ, θ) + ϕ(w, γ, α, θ), we
generalize our insight from Section 3. The first term m(w, γ, θ) is essentially a generalized
Wald formula. The second term ϕ(w, γ, α, θ) is essentially a product between the κ weight
and a generalized regression residual. In the language of semiparametrics, we augment
the κ weight with the Wald formula. Equivalently, we debias the Wald formula with the
κ weight.
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The doubly robust moment function ψ remains valid if either γ0 or α0 is misspecified:

0 = E{ψ(W,γ, α0, θ0) = E[ψ(W,γ0, α, θ0)} for any γ, α.

In the former expression, γ0 may be misspecified yet ψ remains valid as an estimating
equation. In the latter, α0 may be misspecified yet ψ remains valid as an estimating
equation. Theorem 4.1 demonstrates that all complier parameters in cases 1 and 2 of
Definition 2.1 have a doubly robust moment function ψ with a common structure. As
such, we are able to analyse all of these causal parameters with the same argument. Case
3 of Definition 2.1 is more involved, but we show that it shares this common structure.

Theorem 4.2. (Case 3) Suppose Assumption 2.1 holds. Let g(y, d, x, θ) be a measur-
able, real valued function such that E{g(Y,D,X, θ)2} <∞ for all θ in Θ. If θ0 is defined
by the moment condition E{g(Y,D,X, θ0) | D(1) > D(0)} = 0, then the doubly robust
moment function for θ0 is of the form

ψ(w, γ̃, α̃, θ) = m(w, γ̃, θ) + ϕ(w, γ̃, α̃, θ), m(w, γ̃, θ) = γ(z, x, θ) − γ0(1, x, θ) − γ1(0, x, θ)

ϕ(w, γ̃, α̃, θ) = {g(y, d, x, θ) − γ(z, x, θ)} − α0(z, x){(1 − d)g(y, d, x, θ) − γ0(z, x, θ)}
− α1(z, x){dg(y, d, x, θ) − γ1(z, x, θ)}

where γ̃ concatenates (γ, γ0, γ1) and α̃ concatenates (α0, α1). These functions are

γ0(z, x, θ) = E{g(Y,D,X, θ) | z, x}, γ00(z, x, θ) = E{(1 −D)g(Y,D,X, θ) | z, x},
γ10(z, x, θ) = E{Dg(Y,D,X, θ) | z, x}, α0

0(z, x) = z/π0(x), α1
0(z, x) = (1 − z)/{1 − π0(x)}.

Proof. The argument is similar to the proof of Theorem 4.1. Under Assumption 2.1,
we can appeal to Abadie (2003, Theorem 3.1):

0 = E{g(Y,D,X, θ0) | D(1) > D(0)} =
E{κ(W )g(Y,D,X, θ0)}

pr{D(1) > D(0)}
.

Hence

0 = E{κ(W )g(Y,D,X, θ0)}

= E

{
g(Y,D,X, θ0) − Z

π0(X)
(1 −D)g(Y,D,X, θ0) − 1 − Z

1 − π0(X)
Dg(Y,D,X, θ0)

}
= E

{
γ0(Z,X, θ0) − Z

π0(X)
γ00(Z,X, θ0) − 1 − Z

1 − π0(X)
γ10(Z,X, θ0)

}
= E{γ0(Z,X, θ0) − γ00(1, X, θ0) − γ10(0, X, θ0)}

appealing to the previous statement, Proposition 3.1, the definitions of (γ0, γ
0
0 , γ

1
0) to-

gether with the law of iterated expectations, and Proposition 3.2.

This time, the doubly robust moment function ψ remains valid if either γ̃0 or α̃0 is
misspecified, i.e.

0 = E{ψ(W, γ̃, α̃0, θ0) = E[ψ(W, γ̃0, α̃, θ0)} for any γ̃, α̃.

In the former expression, γ̃0 may be misspecified yet ψ remains valid as an estimating
equation. In the latter, α̃0 may be misspecified yet ψ remains valid as an estimating
equation.
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In Section 5, we translate this general characterization of the doubly robust moment
into a practical hypothesis test to evaluate the external validity of instruments. In Ap-
pendix A, we translate this general characterization into general machine learning es-
timators for complier parameters, which we use to implement the hypothesis test. In
particular, we consider direct estimation of the balancing weight, a procedure that we
call automatic κ weighting (Auto-κ). In Appendix B, we translate this general charac-
terization into further hypothesis tests.

5. A HYPOTHESIS TEST TO COMPARE OBSERVABLE CHARACTERISTICS

5.1. Corollaries for average complier characteristics

As a corollary, we characterize the doubly robust moment for average complier charac-
teristics, which appears to have been previously unknown. Using the new doubly robust
moment, we propose a hypothesis test, free of strong functional form restrictions, to
evaluate (a) whether two different instruments induce subpopulations of compliers with
the same observable characteristics, on average; and (b) whether compliers have observ-
able characteristics that are the same as the full population, treated subpopulation, or
untreated subpopulation, on average.

Corollary 5.1. (Average complier characteristics) The doubly robust moment
for average complier characteristics is

ψ(w, γ, α, θ) = A(θ){γ(1, x) − γ(0, x)} + α(z, x)A(θ){v − γ(z, x)}, A(θ) =
(
I, −θ

)
where v = {df(x)⊤, d}⊤, γ0(z, x) = E(V | z, x), and α0(z, x) = z/π0(x) − (1 − z)/{1 −
π0(x)}.

Proof. The result is a special case of Corollary A.1 in Appendix A.

Suppose we wish to test the null hypothesis that two different instruments Z1 and
Z2 induce complier subpopulations with the same observable characteristics on average.
Denote by θ̂1 and θ̂2 the estimators for average complier characteristics using the different
instruments Z1 and Z2, respectively. One may construct machine learning estimators θ̂1
and θ̂2 based on the doubly robust moment function in Corollary 5.1. In Appendix A, we
instantiate automatic κ weight (Auto-κ) estimators of this type. The following procedure
allows us to test the null hypothesis from some estimator Ĉ for the asymptotic variance
C of θ̂ = (θ̂⊤1 , θ̂

⊤
2 )⊤. Appendix A provides an explicit variance estimator Ĉ based on

Auto-κ.

Algorithm 5.1. (Test for difference of average complier characteristics)

Given θ̂ and Ĉ, which may be based on Auto-κ as in Appendix A,

Step 1. Calculate the statistic T = n(θ̂1 − θ̂2)⊤(RĈR⊤)−1(θ̂1 − θ̂2) where R =(
I, −I

)
.

Step 2. Compute the value ca as the (1 − a) quantile of χ2{dim(θ1)}.
Step 3. Reject the null hypothesis if T > ca.

Algorithm 5.1 can also test the null hypothesis that compliers have observable char-
acteristics that are the same as the full population on average. θ̂1 is as before, θ̂2 =
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n−1
∑n

i=1 f(Xi), and Ĉ updates accordingly. The same is true for comparisons with

the treated and untreated subpopulations. For example, for the former, θ̂1 is as before,
θ̂2 = (

∑n
i=1Di)

−1
∑n

i=1Dif(Xi), and Ĉ updates accordingly. In summary, the test as-
sesses how similar, in terms of observable characteristics, the complier subpopulation is
to other (sub)populations of interest: the complier subpopulation for a different instru-
ment; the full population; the treated subpopulation; or the untreated subpopulation.
The null hypothesis has the dimension dim(θ1), which is finite following Definition 2.2.
Future work may consider high dimensional complier characteristics.

The test sheds some light on the robustness and external validity of policy evaluation
when using instruments. If the complier subpopulations in various studies are dissimilar
to each other, then the policy conclusions of those studies may not be robust: different
choices of instruments may lead to divergent policy conclusions. If the complier subpop-
ulation in a study is dissimilar to the population of policy interest, then that study may
lack external validity: its policy conclusions may not hold for the relevant population.

The test focuses on only observable characteristics, so it is a partial answer to the
question of whose treatment effects are being estimated when using a particular instru-
ment. It complements estimation of the fraction of compliers in the sample; the fraction
of compliers could be small, yet the compliers could have observable characteristics that
are similar to the (sub)population of interest.

Corollary 5.2. (Test for difference of average complier characteristics)

If n1/2(θ̂ − θ0)⇝ N (0, C) and Ĉ = C + op(1), then the hypothesis test in Algorithm 5.1
falsely rejects the null hypothesis H0 with probability approaching the nominal level, i.e.
pr(T > ca | H0) → a.

Proof. The result is immediate from Newey and McFadden (1994, Section 9).

Corollary 5.2 is our main practical result: justification of a flexible hypothesis test to
evaluate a difference in average complier characteristics. It appears that no semipara-
metric test previously exists for this important question about the external validity of
instruments. By developing this hypothesis test, we equip empirical researchers with a
new robustness check. This practical result follows as a consequence of our main insight
in Section 3 and our main theoretical result in Section 4. In Appendix A, we verify the
conditions of Corollary 5.2 for Auto-κ under additional weak regularity assumptions.

In terms of power, the test based on Auto-κ estimation is asymptotically efficient
(Van der Vaart, 2000) because the Auto-κ estimator for average complier characteristics
is semiparametrically efficient. See Appendix A for formal justification. Specifically, in
Appendix A, we verify that average complier characteristics belong to a sub-class of
complier parameters with affine moments. For this sub-class, the doubly robust moment
coincides with the semiparametrically efficient score (Hahn, 1998).

Our framework naturally extends to test (a) a finite number of moments of complier
characteristics, and (b) a finitely supported distribution of complier characteristics. For
uncentered moments, the extension is immediate: simply take the function f in Def-
inition 2.2 to be the polynomial corresponding to the desired moments. For centered
moments, the extension is straightforward, which we demonstrate in Appendix B by pre-
senting a test for the difference of complier characteristic variances. We also present a
test for the difference of complier characteristic distributions, over a finite support.
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5.2. Empirical application

With this practical result, we revisit a classic empirical paper in labour economics to
test whether two different instruments induce different average complier characteristics.
Angrist and Evans (1998a) estimate the impact of childbearing D on female labour
supply Y in a sample of 394,840 mothers, aged 21–35 with at least two children, from
the 1980 Census (Angrist and Evans, 1998b; Angrist and Fernández-Val, 2013b). The
first instrument Z1 is twin births: Z1 indicates whether the mother’s second and third
children were twins. The second instrument Z2 is same-sex siblings: Z2 indicates whether
the mother’s initial two children were siblings with the same sex. The authors reason that
both (Z1, Z2) are quasi random events that induce having a third child.

The two instruments give rise to two LATE estimates for the reduction in weeks worked
due to a third child: -3.28 (0.63) for Z1 and -6.36 (1.18) for Z2, where the standard errors
are in parentheses. Angrist and Fernández-Val (2013a) attribute the difference in LATE
estimates to a difference in average complier characteristics, i.e. a difference in average
covariates for instrument specific complier subpopulations. The authors use parametric
κ weights, report point estimates without standard errors, and conclude that “twins
compliers therefore are relatively more likely to have a young second-born and to be
highly educated.”

We replicate, extend, and test these previous findings. Using parametric κ weights,
Angrist and Fernández-Val (2013a) estimate π0(X) using a logistic model with poly-
nomials of continuous covariates. In our semiparametric Auto-κ approach, we expand
the dictionary to higher order polynomials, include interactions between the instrument
and covariates, and directly estimate and regularize the balancing weights. Crucially, our
main result allows us to conduct inference, and to test whether the instruments Z1 and
Z2 induce differences in the observable complier characteristics suggested by previous
work.

Table 1. Comparison of average complier characteristics

Average age of second child Average schooling of mother
Twins Same 2 sided 1 sided Twins Same 2 sided 1 sided

κ weight 5.51 7.14 - - 12.43 12.07 - -
Auto-κ 4.58 7.00 0.14 0.07 9.78 12.10 0.53 0.27
(S.E.) (0.72) (1.46) - - (2.44) (2.78) - -

Note: S.E., standard error; Auto-κ, automatic κ weighting. See Section A and
Supplement S5 for estimation details.

Table 1 summarizes results. In Columns 1, 2, 5, and 6, we find similar point estimates
to Angrist and Fernández-Val (2013a), given in Row 1. Columns 3, 4, 7, and 8 report p
values for tests of the null hypothesis that average complier characteristics are equal for
the twins and same-sex instruments. We find weak evidence in favour of the explanation
that twins compliers are more likely to have a young second-born. We do not find evidence
that twins compliers have a significantly different education level than same-sex compliers
in terms of the average years of mother’s schooling. In Appendix B, we discretize mother’s
schooling into a categorical variable, then test for a difference in distributions of education
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categories. We find evidence that twins compliers are more likely to be college graduates,
corroborating the conclusions of Angrist and Fernández-Val (2013a).

6. CONCLUSION

We propose a semiparametric test to evaluate (a) whether two different instruments in-
duce subpopulations of compliers with the same observable characteristics, on average;
and (b) whether compliers have observable characteristics that are the same as the full
population, treated subpopulation, or untreated subpopulation, on average. This hypoth-
esis test is flexible and practical, shedding light on the difference in LATE estimates that
Angrist and Evans (1998a) obtain when using two different instruments. As a contribu-
tion to semiparametric theory, we characterize the doubly robust moment function for
the entire class of complier parameters from Abadie (2003), answering an open question
in order to handle the new and economically important case of average complier charac-
teristics. As a contribution to applied econometrics, we propose and analyse a machine
learning update to κ weighting that we call the automatic κ weight (Auto-κ).

A. AUTOMATIC κ WEIGHTS

A.1. Estimation

In Section 4, we present our main theoretical result: the doubly robust moment function
for the class of complier parameters in Definition 2.1. In this section, we propose a
machine learning estimator based on this doubly robust moment function, which we call
automatic κ weighting (Auto-κ). We verify the conditions of Corollary 5.2 using Auto-κ.
In doing so, we provide a concrete end-to-end procedure to test whether two different
instruments induce subpopulations of compliers with the same observable characteristics.

Debiased machine learning (Chernozhukov et al., 2018, 2022, 2023) is a meta estimation
procedure that combines doubly robust moment functions (Robins and Rotnitzky, 1995)
with sample splitting (Klaassen, 1987). Given the doubly robust moment function of
some causal parameter of interest as well as machine learning estimators (γ̂, α̂) for its
nonparametric components, debiased machine learning generates an estimator of the
causal parameter.

Algorithm A.1. (Debiased machine learning) Partition the sample into subsets
(Iℓ), (ℓ = 1, ..., L).

Step 1. For each ℓ, estimate γ̂−ℓ and α̂−ℓ from observations not in Iℓ.

Step 2. Estimate θ̂ as the solution to n−1
∑L

ℓ=1

∑
i∈Iℓ

ψ(Wi, γ̂−ℓ, α̂−ℓ, θ)|θ=θ̂ = 0.

In Theorems 4.1 and 4.2, we characterize the doubly robust moment function ψ for
complier parameters. What remains is an account of how to estimate the vector valued
regression γ̂ and the balancing weight α̂. Our theoretical results are agnostic about the
choice of (γ̂, α̂) as long as they satisfy the rate conditions in Assumption A.1 below. For
example, γ̂ could be a neural network.

For the balancing weight estimator α̂, we adapt the regularized Riesz representer of
Chernozhukov et al. (2022a), though one could similarly adapt the minimax balanc-
ing weight of Hirshberg and Wager (2021). This aspect of the procedure departs from
the explicit inversion of the propensity score in Tan (2006); Belloni et al. (2017); Cher-
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nozhukov et al. (2018), and it improves numerical stability, which we demonstrate though
comparative simulations in Supplement S4. In particular, we project the balancing weight
α0(Z,X) onto the p dimensional dictionary of basis functions b(Z,X). A high dimensional
dictionary allows for flexible approximation, which we discipline with ℓ1 regularization.

Algorithm A.2. (Regularized balancing weight) Let I−ℓ be the complement of
Iℓ, and let nℓ = |Iℓ|. Based on the observations in I−ℓ,

Step 1. Calculate p× p matrix Ĝ−ℓ = (n− nℓ)
−1

∑
i∈I−ℓ

b(Zi, Xi)b(Zi, Xi)
⊤.

Step 2. Calculate p× 1 vector M̂−ℓ = (n− nℓ)
−1

∑
i∈I−ℓ

b(1, Xi) − b(0, Xi).

Step 3. Set α̂−ℓ(Z,X) = b(Z,X)⊤ρ̂−ℓ where ρ̂−ℓ = argminρ ρ
⊤Ĝ−ℓρ − 2ρ⊤M̂−ℓ +

2λn|ρ|1.

The regularization parameter λn is determined by an iterative tuning procedure described
in Supplement S3.

As summarized by Chernozhukov et al. (2022b), regularized linear combinations of
conventional basis functions b(Z,X) may be used to approximate certain function classes
well. For example, Tsybakov (2012) shows that Fourier bases approximate Sobolev balls,
and Belloni et al. (2014) show that Fourier bases approximate rearranged Sobolev balls.

We refer to our proposed estimator, which combines the doubly robust moment func-
tion from Theorems 4.1 and 4.2 with the meta procedure in Algorithm A.1 and the
regularized balancing weights in Algorithm A.2, as automatic κ weighting (Auto-κ) for
complier parameters. The new doubly robust moment in Corollary 5.1 means that Auto-κ
applies to the new and economically important case of average complier characteristics.

A.2. Approximate balance

Auto-κ confers a finite sample guarantee of balance on average. Consider the dictionary
of basis functions b(z, x)⊤ = {zq(x)⊤, (1 − z)q(x)⊤} and the corresponding partition of
the coefficient ρ⊤ = [{ρ(z=1)}⊤, {ρ(z=0)}⊤].

Proposition A.1. (Approximate balance) Auto-κ with regularization λn yields∣∣∣∣∣∣ 1

n− nℓ

∑
i∈I−ℓ

q(Xi) −
1

n− nℓ

∑
i∈I−ℓ

q(Xi)Zi · ω̂(z=1)
−ℓ,i

∣∣∣∣∣∣
∞

≤ λn,∣∣∣∣∣∣ 1

n− nℓ

∑
i∈I−ℓ

q(Xi) −
1

n− nℓ

∑
i∈I−ℓ

q(Xi)(1 − Zi) · ω̂(z=0)
−ℓ,i

∣∣∣∣∣∣
∞

≤ λn,

for all n, where ω̂
(z=1)
−ℓ,i = q(Xi)

⊤ρ̂
(z=1)
−ℓ and ω̂

(z=0)
−ℓ,i = q(Xi)

⊤ρ̂
(z=0)
−ℓ .

Proof. The first order condition gives |M̂−ℓ − Ĝ−ℓρ̂−ℓ|∞ ≤ λn.

Proposition A.1 shows that the weights {ω̂(z=1)
ℓ,i , ω̂

(z=0)
ℓ,i } serve to approximately bal-

ance the overall sample average with the sample average of the group that is assigned
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the instrument (Z = 1) and the sample average of the group that is not assigned the
instrument (Z = 0), across each basis function of the dictionary q. The result is similar
to the balancing conditions of Zubizarreta (2015) and Athey et al. (2018). Auto-κ auto-
matically calculates these weights. This property does not hold for κ weight and debiased
machine learning estimators that have explicit inverse propensity scores.

A.3. Affine moments

When we verify the conditions of Corollary 5.2 using Auto-κ, we focus on a sub-class of
the complier parameters in Definition 2.1. This sub-class is rich enough to include several
empirically important parameters, yet simple enough to avoid iterative estimation. The
sub-class consists of complier parameters with affine moments, which we now define.
The affine moment condition can be relaxed, but doing so incurs iterative estimation
(Chernozhukov et al., 2022).

Definition A.1. (Affine moment) We say a doubly robust moment function ψ is
affine in θ if it takes the form

ψ(W,γ, α, θ) = A(θ){γ(1, X) − γ(0, X)} + α(Z,X)A(θ){V − γ(Z,X)}

where A(θ) is a matrix with entries that are ones, zeros, or components of θ.

We verify that several empirically important complier parameters have affine moments.

Definition A.2. (Empirically important complier parameters) Consider the fol-
lowing popular parameters.

1 LATE is θ0 = E{Y (1) − Y (0) | D(1) > D(0)}.
2 Average complier characteristics are θ0 = E{f(X) | D(1) > D(0)} for any measur-

able function f of covariate X that may have a finite dimensional, real vector value
such that E{fj(X)2} <∞.

3 Complier counterfactual outcome distributions are θ0 = (θy0)y∈U where

θy0 =

(
βy
0

δy0

)
=

[
pr{Y (0) ≤ y | D(1) > D(0)}
pr{Y (1) ≤ y | D(1) > D(0)}

]
and U ⊂ Y is a fixed grid of finite dimension.

Corollary A.1. (Empirically important parameters have affine moments) Under
Assumption 2.1, the doubly robust moment functions for LATE, average complier char-
acteristics, and complier counterfactual outcome distributions are affine, where

1 For LATE (Tan, 2006), we set V = (Y,D)⊤ and A(θ) =
(
1, −θ

)
.

2 For complier characteristics, we set V = (Df(X)⊤, D)⊤ and A(θ) =
(
I, −θ

)
.

3 For complier counterfactual distributions (Belloni et al., 2017), we set

V y = {(D − 1)1Y≤y, D1Y≤y, D}⊤ and A(θy) =

(
1 0 −βy

0 1 −δy
)
.

Proof. Suppose we can decompose v(w, θ) = h(w, θ) + a(θ) for some function a(·) that
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does not depend on data. Then we can replace v(w, θ) with h(w, θ) without changing m
and ϕ in the sense of Theorem 4.1. This is because

E{v(W, θ) | z, x} = E{h(W, θ) | z, x} + a(θ)

and hence

v(w, θ) − E{v(W, θ) | z, x} = h(w, θ) − E{h(W, θ) | z, x}.
Whenever we use this reasoning, we write v(w, θ) ∝ h(w, θ).

1 For LATE we can write θ0 = δ0 − β0, where δ0 is defined by the moment condition
E{Y (1)−δ0 | D(1) > D(0)} = 0 and β0 is defined by the moment condition E{Y (0)−
β0 | D(1) > D(0)} = 0. Applying Case 2 of Theorem 4.1 to δ0, we have v(w, δ) =
d(y− δ). Applying Case 1 of Theorem 4.1 to β0, we have v(w, β) = (d−1)(y−β) ∝
(d− 1)y − dβ. Writing θ = δ − β, the moment function for θ0 can be derived with

v(w, θ) = v(w, δ) − v(w, β) = y − dθ.

This expression decomposes into V = (Y,D)⊤ and A(θ) =
(
1, −θ

)
in Corol-

lary A.1.
2 For average complier characteristics, θ0 is defined by the moment condition E{f(X)−
θ0 | D(1) > D(0)} = 0. Applying Case 2 of Theorem 4.1 setting g(Y (1), X, θ0) =
f(X) − θ0, we have v(w, θ) = d(f(x) − θ). This expression decomposes into V =
(Df(X)⊤, D)⊤ and A(θ) =

(
I, −θ

)
in Corollary A.1.

3 For the complier distribution of Y (0), βȳ
0 is defined by the moment condition

E{1Y (0)≤ȳ−β
ȳ
0 | D(1) > D(0)} = 0. Applying Case 1 of Theorem 4.1 to βȳ

0 , we have
v(w, βȳ) = (d− 1)(1y≤ȳ −βȳ) ∝ (d− 1)1y≤ȳ −dβȳ. For the complier distribution of
Y (1), δȳ0 is defined by the moment condition E{1Y (1)≤ȳ−δ

ȳ
0 | D(1) > D(0)} = 0. Ap-

plying Case 2 of Theorem 4.1 to δ0, we have v(w, δȳ) = d(1y≤ȳ−δȳ). Concatenating
v(w, βȳ) and v(w, δȳ), we arrive at the decomposition in Corollary A.1.

A.4. Inference

We prove the Auto-κ estimator for complier parameters is consistent, asymptotically
normal, and semiparametrically efficient. In doing so, we verify the conditions of Corol-
lary 5.2. We build on the theoretical foundations in Chernozhukov et al. (2022) to gen-
eralize the main result in Chernozhukov et al. (2022a). We assume the following.

Assumption A.1. (Conditions for complier parameter estimation) Assume

1 Affine moment: ψ is affine in θ;
2 Bounded propensity: π0(X) is in (c̄, 1− c̄) for some c̄ > 0 uniformly over the support

of X;
3 Bounded variance: var(V | Z,X) is bounded uniformly over the support of (Z,X);
4 Nonsingular Jacobian: J = E {∂ψ(W,γ0, α0, θ)/∂θ|θ=θ0} is nonsingular;
5 Compact parameter space: θ0, θ̂ are in Θ, a compact parameter space;
6 Rates: |α̂|∞ = Op(1), ∥α̂−α0∥ = op(1), ∥γ̂− γ0∥ = op(1), and ∥α̂−α0∥∥γ̂− γ0∥ =
op(n−1/2), where ∥Vj∥ = {E(V 2

j )}1/2 and ∥V ∥ = {∥V1∥, ..., ∥Vdim(V )∥}⊤.

The most substantial condition in Assumption A.1 is the rate condition. In Supple-
ment S1, we verify the rate condition for the α̂ estimator in Algorithm A.2. Since γ̂ is a
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standard nonparametric regression, a broad variety of estimators and their mean square
rates can be quoted to satisfy the rate condition for γ̂. The product condition formalizes
the mixed bias property. It allows either the convergence rate of γ̂ to be slower than
n−1/4 or the convergence rate of α̂ to be slower than n−1/4, as long as the other conver-
gence rate is faster than n−1/4. As such, it allows either γ̂ to be a complicated function
or α̂ to be a complicated function, as long as the other is a simple function, in a sense
that we formalize in Supplement S1.

Theorem A.1. (Consistency and asymptotic normality) Suppose Assumption A.1

holds. Then n1/2(θ̂ − θ0)⇝ N (0, C) and Ĉ = C + op(1) where

J = E

{
∂ψ0(W )

∂θ

}
, Ĵ =

1

n

L∑
ℓ=1

∑
i∈Iℓ

∂ψ̂i(θ̂)

∂θ
, Ω = E{ψ0(W )ψ0(W )⊤}, Ω̂ =

1

n

L∑
ℓ=1

∑
i∈Iℓ

ψ̂i(θ̂)ψ̂i(θ̂)
⊤

C = J−1ΩJ−1, Ĉ = Ĵ−1Ω̂Ĵ−1, ψ0(W ) = ψ(W,γ0, α0, θ0), ψ̂i(θ) = ψ(Wi, γ̂−ℓ, α̂−ℓ, θ).

Proof. We defer the proof to Supplement S2.

When the doubly robust moment function ψ is affine in θ, the Auto-κ estimator achieves
semiparametric efficiency because the doubly robust moment function coincides with
the semiparametrically efficient score (Hahn, 1998). Therefore hypothesis tests based on
Auto-κ are asymptotically efficient in this case. When the doubly robust moment function
ψ is not affine in θ, the Auto-κ estimator may not be semiparametrically efficient, and
so hypothesis tests based on Auto-κ may not be asymptotically efficient. Future research
may examine the power properties of tests based on Auto-κ when ψ is not affine in θ.

Throughout this paper, we focus on low dimensional complier parameters identified
using a binary instrument Z, which is valid conditional on a possibly high dimensional
vector of covariates X. Future work may consider high dimensional complier parameters,
e.g. complier counterfactual outcome distributions or complier characteristic distribu-
tions using a grid of increasing dimension. When the grid has fixed dimension, then the
complier parameters are low dimensional and so our inference and efficiency results apply.

In summary, extensions of our Auto-κ inference and efficiency results to non-affine and
high dimensional complier parameters are important directions for future work.

B. EXTENSIONS: VARIANCES AND DISTRIBUTIONS

B.1. Scope of extensions

As discussed in Section 1, the focus of this paper is low dimensional complier parameters
that are identified using a binary instrumental variable Z, which is valid conditional on
a possibly high dimensional vector of covariates X. As defined in Section 2, the average
complier characteristics belong to this class, where θ0 = E{f(X) | D(1) > D(0)} for a
function f of covariate X that has a finite dimensional, real vector value.

In this appendix, we demonstrate that specific choices of f allow us to extend our
results to complier characteristic variances and distributions. Formally, our framework
extends to test (a) a finite number of moments of complier characteristics, and (b) a
finitely supported distribution of complier characteristics. For simplicity, we state these
extensions for a scalar characteristic of interest, which we denote by X∗ ⊂ X. These
extensions generalize to vector characteristics of fixed dimension, with heavier notation.
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The inference results of Appendix A apply to parameter vectors of fixed dimension.
When covariates are high dimensional, we test means of “few” covariates (i.e. finitely
many covariates), or test distributions of “simple” covariates” (i.e. covariates with fi-
nite support). The results in Appendix A do not apply to complier characteristics of
increasing dimension, such as means of “many” covariates (e.g. all of the high dimen-
sional covariates) or distributions of “complex” covariates (i.e. covariates with increasing
support). Such extensions are important directions for future work.

B.2. Corollaries for complier characteristic variances and distributions

Suppose we wish to test the null hypothesis that two different instruments Z1 and Z2

induce complier subpopulations with the same variances of the observable characteristic
X∗, which is a scalar covariate. Set f(X) = (X∗, X

2
∗ )⊤, so that

(θF , θS)⊤ = E{(X∗, X
2
∗ )⊤ | D(1) > D(0)}.

θF is the first moment and θS is the second moment. Denote by (θ̂1F , θ̂1S) and (θ̂2F , θ̂2S)
the estimators for these moments using the different instruments Z1 and Z2, respectively.
The following procedure allows us to test the null hypothesis from some point estimator
θ̂ = (θ̂1F , θ̂1S , θ̂2F , θ̂2S)⊤ and from some variance estimator Ĉ for the asymptotic variance

of θ̂. Appendix A provides details for constructing θ̂ and Ĉ based on the Auto-κ approach.

Algorithm B.1. (Test for difference of complier characteristic variances)

Given θ̂ and Ĉ, which may be based on Auto-κ as in Appendix A,

Step 1. Calculate the statistic T = n{θ̂1S − θ̂21F − (θ̂2S − θ̂22F )}(RĈR⊤)−1{θ̂1S −
θ̂21F − (θ̂2S − θ̂22F )} where R =

(
−2θ̂1F , 1, 2θ̂2F ,−1

)
.

Step 2. Compute the value ca as the (1 − a) quantile of χ2(1).
Step 3. Reject the null hypothesis if T > ca.

Corollary B.1. (Test for difference of complier characteristic variances)

If n1/2(θ̂− θ0)⇝ N (0, C) and Ĉ = C + op(1), then the hypothesis test in Algorithm B.1
falsely rejects the null hypothesis H0 with probability approaching the nominal level, i.e.
pr(T > ca | H0) → a.

Proof. The result is immediate from Newey and McFadden (1994, Section 9). The
argument is identical to that of Corollary 5.2, with further appeal to the delta method.

Next, suppose we wish to test the null hypothesis that two different instruments Z1

and Z2 induce complier subpopulations with the same distributions of the observable
characteristic X∗, which is a scalar covariate. Further suppose that X∗ has a finite support
of d values, which we denote U = (u1, ..., ud). Set f(X) = (1X∗≤u1 , ..., 1X∗≤ud

)⊤, so that

(θu1 , ..., θud)⊤ = E{(1X∗≤u1 , ..., 1X∗≤ud
)⊤ | D(1) > D(0)}.

In this notation, θu = pr{X∗ ≤ u | D(1) > D(0)} is the cumulative mass function of the

complier characteristic X∗ evaluated at value u ∈ U . Denote by θ̂1 = (θ̂u1
1 , ..., θ̂ud

1 )⊤ and

θ̂2 = (θ̂u1
2 , ..., θ̂ud

2 )⊤ the estimators for these cumulative mass functions using the different
instruments Z1 and Z2, respectively. The following procedure allows us to test the null
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hypothesis from some point estimator θ̂ = (θ̂⊤1 , θ̂
⊤
2 )⊤ and from some variance estimator

Ĉ for the asymptotic variance of θ̂. Appendix A provides details for constructing θ̂ and
Ĉ based on the Auto-κ approach.

Algorithm B.2. (Test for difference of complier characteristic distributions)

Given θ̂ and Ĉ, which may be based on Auto-κ as in Appendix A,

Step 1. Calculate the statistic T = n(θ̂1 − θ̂2)⊤(RĈR⊤)−1(θ̂1 − θ̂2) where R =(
I, −I

)
.

Step 2. Compute the value ca as the (1 − a) quantile of χ2(d).

Step 3. Reject the null hypothesis if T > ca.

Corollary B.2. (Test for difference of complier characteristic distributions)

If n1/2(θ̂− θ0)⇝ N (0, C) and Ĉ = C + op(1), then the hypothesis test in Algorithm B.2
falsely rejects the null hypothesis H0 with probability approaching the nominal level, i.e.
pr(T > ca | H0) → a.

Proof. The result is immediate from Newey and McFadden (1994, Section 9).

In summary, for appropriate choices of f in Definition 2.2, our results extend from
complier characteristic averages to complier characteristic variances and complier charac-
teristic distributions over finite support. These additional hypothesis tests follow directly
from the results in the main text. The extension of these results to high dimensional
complier parameters, e.g. an increasing number of moments or an increasing support U ,
is an important direction for future work.

B.3. Empirical application

Finally, we implement our generalized hypothesis test to evaluate whether two different
instruments induce different distributions of complier characteristics. In the empirical
application of Section 5, mother’s schooling may be discretized as a categorical random
variable that takes on four values: high school dropout, high school graduate, some col-
lege, and college graduate. In what follows, we set X∗ to be the mother’s schooling, and
we set U = (u1, ..., u4) to be these four categories of schooling.

Table 2 summarizes results. In Columns 2 and 3, we present probability mass function
estimates; taking sums recovers cumulative mass function estimates. Columns 4 reports
the p values for tests of individual probability mass function values: for each category of
mother’s schooling, we test the null hypothesis that the probability mass function value
is equal for the twins and same-sex instruments. We find strong evidence of a difference
for the highest education category, i.e. for college graduates.

Next, we conduct a test of the null hypothesis that the probability mass function is
equal across all categories of mother’s schooling, for the twins and same-sex instruments.
The p value of this joint test is less than 0.01. We find evidence of a difference in the
distributions across education categories. In summary, we find evidence of a difference
in distributions of mother’s education for twins and same-sex compliers, likely due to a
difference in the highest education category.
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Table 2. Comparison of complier characteristic distributions

Mother’s schooling category Twins Same-sex 2 sided

High school dropout 0.16 0.19 0.13
(S.E.) (0.01) (0.02) -
High school graduate 0.47 0.54 <0.01
(S.E.) (0.02) (0.02) -
Some college 0.22 0.19 0.06
(S.E.) (0.01) (0.01) -
College graduate 0.13 0.08 <0.01
(S.E.) (0.01) (0.01) -

Note: S.E., standard error. See Section A and Supplement S5 for estimation details.
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